Puma Lith EP 0 ### **Puma Energy Australia** Chemwatch: **65-7447** Version No: **2.1.1.1** Safety Data Sheet according to WHS and ADG requirements ### Chemwatch Hazard Alert Code: 1 Issue Date: **15/08/2016**Print Date: **09/11/2016**L.GHS.AUS.EN ## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ### **Product Identifier** | Product name | Puma Lith EP 0 | |-------------------------------|----------------| | Synonyms | Not Available | | Other means of identification | Not Available | ### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Multipurpose lithium soap based grease for industrial use. ### Details of the supplier of the safety data sheet | Registered company name | Puma Energy Australia | |-------------------------|--| | Address | 23 Theodore Street Eagle Farm QLD 4009 Australia | | Telephone | 1300 723 706 (24 hour contact) | | Fax | 1300 723 321 | | Website | www.Pumaenergy.com | | Email | PumaAu-Safety@pumaenergy.com | ### **Emergency telephone number** | Association / Organisation | Not Available | |-----------------------------------|------------------------| | Emergency telephone numbers | 1800 039 008 (24hours) | | Other emergency telephone numbers | Not Available | #### CHEMWATCH EMERGENCY RESPONSE | Primary Number | Alternative Number 1 | Alternative Number 2 | |----------------|----------------------|----------------------| | 1800 039 008 | 1800 039 008 | +612 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 ### **SECTION 2 HAZARDS IDENTIFICATION** ### Classification of the substance or mixture ### CHEMWATCH HAZARD RATINGS | | Min | Max | 1 | |--------------|-----|-----|-------------------------| | Flammability | 1 | | ! | | Toxicity | 0 | | 0 = Minimum | | Body Contact | 1 | | 1 = Low
2 = Moderate | | Reactivity | 1 | | 3 = High | | Chronic | 0 | | 4 = Extreme | | Poisons Schedule | Not Applicable | |--------------------|--------------------------------------------------------------------------------------------------------------------------------| | Classification [1] | Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | ### Label elements | Label elements | | |-----------------------------------|--| | GHS label elements Not Applicable | | | | | | SIGNAL WORD NOT APPLICABLE | | ### Hazard statement(s) Version No: 2.1.1.1 Puma Lith EP 0 Issue Date: 15/08/2016 Print Date: 09/11/2016 H412 Harmful to aquatic life with long lasting effects. Precautionary statement(s) Prevention P273 Avoid release to the environment. ### Precautionary statement(s) Response Not Applicable #### Precautionary statement(s) Storage Not Applicable ### Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. #### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---------------|-----------|--------------------------------------------| | 68649-42-3 | <5 | zinc dialkyl dithiophosphate | | Not avail. | NotSpec. | mineral oil | | Not Available | >60 | Ingredients determined not to be hazardous | #### **SECTION 4 FIRST AID MEASURES** ### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | ### Indication of any immediate medical attention and special treatment needed Treat symptomatically. - Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product. - In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases. - ► High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement. NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes. ### **SECTION 5 FIREFIGHTING MEASURES** # **Extinguishing media** - ▶ Foam. - Dry chemical powder. - BCF (where regulations permit). - Water spray or fog Large fires only. Fire Fighting ### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result ### Advice for firefighters - ▶ Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water courses. - Use water delivered as a fine spray to control fire and cool adjacent area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - ▶ If safe to do so, remove containers from path of fire. Chemwatch: 65-7447 Issue Date: 15/08/2016 Page 3 of 8 Version No: 2.1.1.1 Print Date: 09/11/2016 ### Puma Lith EP 0 | | ► Equipment should be thoroughly decontaminated after use. | |-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Fire/Explosion Hazard | Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include; carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire. | | HAZCHEM | Not Applicable | ## SECTION 6 ACCIDENTAL RELEASE MEASURES ### Personal precautions, protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 ### Methods and material for containment and cleaning up | Minor Spills | Slippery when spilt. Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety goggles. Trowel up/scrape up. Place spilled material in clean, dry, sealed container. Flush spill area with water. | |--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Major Spills | Slippery when spilt. Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment as required. Prevent spillage from entering drains or water ways. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. Wash area and prevent runoff into drains or waterways. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** | Safe handling | Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. | |-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Other information | Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | Metal can or drum | Suitable container | Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. | |-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Storage incompatibility | CARE: Water in contact with heated material may cause foaming or a steam explosion with possible severe burns from wide scattering of hot material. Resultant overflow of containers may result in fire. Avoid reaction with oxidising agents | ### SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION Chemwatch: 65-7447 Version No: 2.1.1.1 Page 4 of 8 Puma Lith EP 0 Issue Date: 15/08/2016 Print Date: 09/11/2016 #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|-------------|---------------------------|---------|---------------|---------------|---------------| | Australia Exposure Standards | mineral oil | Oil mist, refined mineral | 5 mg/m3 | Not Available | Not Available | Not Available | #### | EMERGENCY LIMITS | | | | | | |--------------------------------------------|---------------|---------------|---------------|---------------|--| | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | | | Puma Lith EP 0 | Not Available | Not Available | Not Available | Not Available | | | | | | | | | | Ingredient | Original IDLH | | Revised IDLH | | | | zinc dialkyl dithiophosphate | Not Available | | Not Available | | | | mineral oil | Not Available | | Not Available | | | | Ingredients determined not to be hazardous | Not Available | | Not Available | | | #### MATERIAL DATA #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. #### Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s (50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) | 2.5-10 m/s (500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |------------------------------------------------------------|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Personal protection # Eye and face protection - Chemical goggles - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection ### See Hand protection below ### Hands/feet protection - ▶ Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber - **Body protection** - See Other protection below Version No: 2.1.1.1 Puma Lith EP 0 | Other protection | Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit. | |------------------|-------------------------------------------------------------------------------------------------------------------------------------| | Thermal hazards | Not Available | ### Respiratory protection Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. ### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ### Information on basic physical and chemical properties | Appearance | Dark brown odourless non slump paste; not miscible with water. | | | |----------------------------------------------|----------------------------------------------------------------|-----------------------------------------|----------------| | Physical state | Non Slump Paste | Relative density (Water = 1) | 0.9 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | >180 | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | >240 (COC) | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|---------------------------------------------------------------------------| | Chemical stability | Product is considered stable and hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 TOXICOLOGICAL INFORMATION** ### Information on toxicological effects | Inhaled | Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. | |--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Ingestion | The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. | | Skin Contact | The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Eye | The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. | Issue Date: 15/08/2016 Print Date: 09/11/2016 Chemwatch: **65-7447**Version No: **2.1.1.1** Page 6 of 8 #### Puma Lith EP 0 Issue Date: **15/08/2016**Print Date: **09/11/2016** ### Chronic Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Principal route of exposure is by skin contact; lesser exposures include inhalation of fumes from hot oils, oil mists or droplets. Prolonged contact with mineral oils carries with it the risk of skin conditions such as oil folliculitis, eczematous dermatitis, pigmentation of the face (melanosis) and warts on the sole of the foot (plantar warts). With highly refined mineral oils no appreciable systemic effects appear to result through skin absorption. Exposure to oil mists frequently elicits respiratory conditions, such as asthma; the provoking agent is probably an additive. High oil mist concentrations may produce lipoid pneumonia although clinical evidence is equivocal. In animals exposed to concentrations of 100 mg/m3 oil mist, for periods of 12 to 26 months, the activity of lung and serum alkaline phosphatase enzyme was raised; 5 mg/m3 oil mist did not produce this response. These enzyme changes are sensitive early indicators of lung damage. Workers exposed to vapours of mineral oil and kerosene for 5 to 35 years showed an increased prevalence of slight basal lung fibrosis | Puma Lith EP 0 | TOXICITY | IRRITATION | | |------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--| | | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | zinc dialkyl dithiophosphate | Dermal (rabbit) LD50: >22400000 mg/kg ^[1] | Eye (human):SEVERE [Manufacturer] | | | | Oral (rat) LD50: 3600 mg/kg ^[1] | | | | | TOXICITY | IRRITATION | | | mineral oil | Not Available | Not Available | | | Legend: | | cute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data | | | _ | extracted from RTECS - Register of Toxic Effect of chemical Substances | | | The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. For dithiophosphate alkyl esters and their (zinc) salts: Acute toxicity: Dithiophosphate alkyl esters consist of a phosphorodithioic acid structure with alkyl ester substituent groups. The alkyl groups are saturated hydrocarbon chains that vary in length and extent of branching. While corrosive to tissue the esters demonstrate a low concern for acute systemic toxicity. Data on acute mammalian toxicity of zinc dialkyldithiophosphates in highly refined lubricant base oil also indicate a low concern for acute toxicity. Commercial oil-based samples of the zinc dialkyldithiophosphate category have been tested for acute oral toxicity. The acute oral LD50 for these studies in rats ranged from 2000-3500 mg/kg. Clinical signs observed following treatment included diarrhea, lethargy, reduced food consumption, and staining about the nose and eye. Ptosis, piloerection, ataxia and salivation were occasionally observed. The incidence and severity of these symptoms were proportional to the dose. In many cases the effects were found to be reversible during observation week 2. Necropsy findings were few in number. Lung congestion, gastrointestinal irritation and a reduction in body fat were observed in some animals. Acute dermal toxicity and irritation studies using the ester on experimental animals resulted in severe dermal irritation and corrosivity. There is minimal opportunity of human exposure to the chemicals in this category. Dithiophosphate alkyl esters exhibit extreme corrosive properties on skin. Commercial oil-based samples of the zinc dialkyldithiophosphate category have been tested for acute dermal toxicity. The acute dermal LD50s for these studies in rabbits were greater than 2000 mg/kg (limit tests). No treatment-related mortality was observed at doses ranging from 2000-8000 mg/kg. Dermal application of the test materials to abraded skin for 24 hours typically produced moderate-to-severe erythema and edema, which in some cases persisted through the 14-day observation period. Clinical signs included varying degrees of reduced food consumption, weight loss, diarrhea, lethargy, ataxia, ptosis, motor incoordination and/or loss of righting reflex. There were no remarkable gross necropsy observations. Overall, the acute dermal LD50 for these substances were greater than 2000 mg/kg indicative of a relatively low order of lethal toxicity. Zinc dialkyldithiophosphates are high molecular weight components (average > 500 gm/mol), which generally accepted that the molecular weight limit for passive transport across biological membranes. Thus, upon exposure it is unlikely that significant amounts of these components will be absorbed for systemic distribution. In addition, these materials have a low water solubility that further inhibits absorption and distribution in the mammalian system. The negligible vapor pressure and high viscosity at ambient temperature indicates that these materials are unlikely to represent an inhalation exposure under conditions of use # ZINC DIALKYL DITHIOPHOSPHATE Repeat dose toxicity: Data from several repeated-dose toxicity studies using commercial samples of zinc dialkyldithiophosphates in highly refined lubricant base oil has been reviewed. Repeated dermal exposure to experimental animals resulted in moderate-to-severe dermal irritation, behavioral distress, body weight loss and emaciation, reduction in hematological parameters and adverse effects on male reproductive organs. These effects were observed across several members of the category with carbon chain lengths ranging from C4-8. There was no evidence that the incremental increase in carbon chain length or molecular weight could be correlated with significant changes in toxicity parameters. Oral administration caused significant gastric irritation and related gastrointestinal disturbances, signs of distress but with no evidence of adverse effects on male reproductive organs. Reproductive toxicity: An epidemiological study on workers exposed to oil-based zinc dialkyldithiophosphates (range C4-8) in an additive manufacturing plant revealed no adverse effects on worker reproductive health. Review of the available information underscores the similarity of clinical and pathological findings in repeated-dose dermal toxicity studies with C4-10 zinc dialkyldithiophosphates, as well as the absence of reproduction and developmental toxicity and the lack of untoward findings in a human epidemiological investigation. Reproductive organ effects, following dermal application, have been observed in male rabbits; these are attributed to the stress associated with the severe dermal responses to the test material, rather than direct a systemic response to the test materials. Changes in male reproductive organs in the rabbit have been observed when other irritating substances are applied to the skin at dose levels that cause skin lesions. Thus, dermal irritation alone, or in combination with the accompanying weight loss and stress, is thought to play a role in the reproductive organ response to repeated cutaneous application of zinc dialkyldithiophosphates. Mutagenicity: Findings indicate that commercial samples of zinc dialkyldithiophosphates in highly refined lubricant base oil have a small potential for inducing genetic toxicity. In vitro bacterial gene mutation assays, in vitro mammalian gene mutation assays, or in vivo chromosomal aberration assays have been conducted. Frequencies of reverse mutations in bacteria were not significantly changed after exposure to the zinc dialkyldithiophosphates. In vitro mutation studies in mammalian cells indicate that the zinc dialkyldithiophosphates do not consistently display mutagenic activity in the absence of metabolic activation, however, upon biotransformation, these materials showed mutagenic activity. The findings in bacterial and mammalian cells did not vary in proportion to the alkyl chain length or any other physicochemical parameter. The results of the studies performed in the absence of hepatic microsome activation were inconsistent, but in general indicating that zinc dialkyldithiophosphates have mutagenic potential (3 studies negative, 3 studies positive in the absence of metabolic activation). However, the weight of evidence (2 studies positive, 1 study negative) indicates that metabolic activation of zinc dialkyldithiophosphates by induced hepatic microsomal enzymes results in a significant increase in the mutagenic potential of this class of chemical substances. Reproductive effector in rats # MINERAL OIL Toxicity and Irritation data for petroleum-based mineral oils are related to chemical components and vary as does the composition and source of the original crude. A small but definite risk of occupational skin cancer occurs in workers exposed to persistent skin contamination by oils over a period of years. This risk has been attributed to the presence of certain polycyclic aromatic hydrocarbons (PAH) (typified by benz[a]pyrene). Petroleum oils which are solvent refined/extracted or severely hydrotreated, contain very low concentrations of both. Chemwatch: 65-7447 Page 7 of 8 Issue Date: 15/08/2016 Version No: 2.1.1.1 Puma Lith EP 0 Print Date: 09/11/2016 | Acute Toxicity | 0 | Carcinogenicity | 0 | |--------------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | 0 | Reproductivity | 0 | | Serious Eye
Damage/Irritation | 0 | STOT - Single Exposure | 0 | | Respiratory or Skin
sensitisation | 0 | STOT - Repeated Exposure | 0 | Legend: Aspiration Hazard 🗶 – Data available but does not fill the criteria for classification Data required to make classification available Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** Mutagenicity \(\rightarrow #### Toxicity | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |------------------------------|--|--------------------|-------------------------------|-----------|--------| | zinc dialkyl dithiophosphate | EC50 | 48 | Crustacea | =11.5mg/L | 1 | | zinc dialkyl dithiophosphate | EC50 | 96 | Algae or other aquatic plants | =1-5mg/L | 1 | | zinc dialkyl dithiophosphate | NOEC | 96 | Algae or other aquatic plants | =1mg/L | 1 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters Wastes resulting from use of the product must be disposed of on site or at approved waste sites. DO NOT discharge into sewer or waterways #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------------------------|-----------------| | zinc dialkyl dithiophosphate | LOW (BCF = 100) | ### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 DISPOSAL CONSIDERATIONS** ### Waste treatment methods Product / Packaging disposal - ▶ Recycle wherever possible or consult manufacturer for recycling options. - ► Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site. - $\blacktriangleright \ \ \text{Recycle containers if possible, or dispose of in an authorised landfill.}$ ### **SECTION 14 TRANSPORT INFORMATION** #### Labels Required | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ### **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture ZINC DIALKYL DITHIOPHOSPHATE(68649-42-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS Puma Lith EP 0 Issue Date: **15/08/2016**Print Date: **09/11/2016** Australia Inventory of Chemical Substances (AICS) #### MINERAL OIL(NOT AVAIL.) IS FOUND ON THE FOLLOWING REGULATORY LISTS | Australia Exposure Standards | International Agency for Research on Cancer (IARC) - Agents Classified by the IARC | |--|--| | Australia Hazardous Substances Information System - Consolidated Lists | Monographs | | National Inventory | Status | |----------------------------------|---| | Australia - AICS | N (mineral oil) | | Canada - DSL | N (mineral oil) | | Canada - NDSL | N (mineral oil; zinc dialkyl dithiophosphate) | | China - IECSC | N (mineral oil) | | Europe - EINEC / ELINCS /
NLP | N (mineral oil) | | Japan - ENCS | N (mineral oil) | | Korea - KECI | N (mineral oil) | | New Zealand - NZIoC | N (mineral oil) | | Philippines - PICCS | N (mineral oil) | | USA - TSCA | N (mineral oil) | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** #### Other information ### Ingredients with multiple cas numbers | Name | CAS No | |------------------------------|---| | zinc dialkyl dithiophosphate | 68649-42-3, 68457-79-4, 1910-06-1, 26566-95-0, 7491-65-8, 4563-55-7, 68442-22-8 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC – STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit $_{\! \circ}$ IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.